ON A COMPOSITE FUNCTIONAL EQUATION RELATED TO THE GOLAB-SCHINZEL EQUATION
نویسندگان
چکیده
منابع مشابه
On Hilbert Golab-Schinzel type functional equation
Let $X$ be a vector space over a field $K$ of real or complex numbers. We will prove the superstability of the following Go{l}c{a}b-Schinzel type equation$$f(x+g(x)y)=f(x)f(y), x,yin X,$$where $f,g:Xrightarrow K$ are unknown functions (satisfying some assumptions). Then we generalize the superstability result for this equation with values in the field of complex numbers to the case of an arbitr...
متن کاملon hilbert golab-schinzel type functional equation
abstract. let x be a vector space over a field k of real or complex numbers.we will prove the superstability of the following golab-schinzel type equationf(x + g(x)y) = f(x)f(y); x; y 2 x;where f; g are unknown functions (satisfying some assumptions). then we generalize the superstability result for this equation with values in the field of complex numbers to the case of an arbitrary hilbert spac...
متن کاملApproximate Solutions of the Generalized Golab-schinzel Equation
play a significant role in the theory of functional equations. Some information on the applications of (1.1) and (1.2) in the determination of substructures of algebraical structures, in the theory of geometric objects and classification of near-rings and quasialgebras, can be found, for example, in [1–5] and in the recent survey paper [6]. At the 38th International Symposium on Functional Equa...
متن کاملOn a new type of stability of a radical cubic functional equation related to Jensen mapping
The aim of this paper is to introduce and solve the radical cubic functional equation $fleft(sqrt[3]{x^{3}+y^{3}}right)+fleft(sqrt[3]{x^{3}-y^{3}}right)=2f(x)$. We also investigate some stability and hyperstability results for the considered equation in 2-Banach spaces.
متن کامل2-Banach stability results for the radical cubic functional equation related to quadratic mapping
The aim of this paper is to introduce and solve the generalized radical cubic functional equation related to quadratic functional equation$$fleft(sqrt[3]{ax^{3}+by^{3}}right)+fleft(sqrt[3]{ax^{3}-by^{3}}right)=2a^{2}f(x)+2b^{2}f(y),;; x,yinmathbb{R},$$for a mapping $f$ from $mathbb{R}$ into a vector space. We also investigate some stability and hyperstability results for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2016
ISSN: 1015-8634
DOI: 10.4134/bkms.2016.53.2.387